
PIAF : développer la Pensée
Informatique et Algorithmique dans

l’enseignement Fondamental

Referential of competencies
Appendix 1: Description and examples

Version 2 – July 2021
0

Table of contents

Table of contents 1

Competency 1: Abstracting away / generalizing 2
C 1.1 Name objects and (sequences of) actions 2
C 1.2 Differentiate (i) object and action, and (ii) atomic actions and non-atomic actions 2
C 1.3 Identify the input parameters of a sequence of actions 3
C 1.4 Describe the outcome of a sequence of actions 4
C 1.5 Predict the outcome of a sequence of actions 5
C 1.6 Using objects whose value can change 5
C 1.7 Recognize existing objects and (sequences of) actions that can be used to reach a
similar goal 6

Competency 2: Compose/decompose a sequence of actions 7
C 2.1 Order a sequence of actions to reach a goal 7
C 2.2 Complete a sequence of actions to reach a simple goal 7
C 2.3 Create a sequence of actions to reach a simple goal 8
C 2.4 Create a sequence of actions to reach a complex goal 8
C 2.5 Combine sequences of actions to reach a goal 9
C 2.6 Decompose goals into simpler subgoals 9

Competency 3: Control a sequence of actions 10
C 3.1 Repeat a sequence of actions a given number of times 10
C 3.2 Repeat a sequence of actions until a goal has been reached 10
C 3.3 Integrate a simple condition into a sequence of actions 11
C 3.4 Integrate a complex condition into a a sequence of actions 11

Competency 4: Evaluate objects or sequences of actions 12
C 4.1 Compare two objects according to a given criterion 12
C 4.2 Compare two sequences of actions according to a given criterion 12
C 4.3 Improve a sequence of actions according to a given criterion 13

Competency 5: Handling formal representations 14
C 5.1 Represent objects or sequences of actions through one formal representation 14
C 5.2 Translate objects or sequences of actions between formal representations 14

Competency 6: Build a sequence of actions iteratively 16
C 6.1 Verify if a sequence of actions reaches a given goal 16
C 6.2 Notice errors in a sequence of actions 17
C 6.3 Fix a sequence of actions for reaching a given goal 17
C 6.4 Extend or modify a sequence of actions to reach a new goal 19

1

Competency 1: Abstracting away / generalizing

C 1.1 Name objects and (sequences of) actions
Definition
Being able to give names to objects, actions and sequences of actions.

Background
It is important to build up the habit to give names to existing objects / actions so that these
can be referred to and that solutions can be expressed easily and straightforwardly.

Note that some values (objects) may be known and will not change (e.g. a family name, a
street number), in that case they are called constants. Some values are not known and / or
may change depending on the context (e.g. temperature), and are thus called variables. This
concept of variable is discussed in competency C 1.6 below.

Examples

1. Given a story with several similar (e.g. all sportsmen) but distinguishable characters,
being able to give them names in order to uniquely identify them and tell a story
about them.

2. One learner does an action, a second one sees it and has to simply tell it to a third
one, who doesn't see the first learner and has to reproduce the action.

3. Two learners agree on four words corresponding to four simple (sequences of)
actions. A third learner comes in. The first learner says one of the four words, the
second learner executes the corresponding commands. From this, the third learner
should be able to learn the language and then perform the requested commands.

4. Describe the steps necessary to get dressed, and then just call this sequence of
actions “getting dressed”.

C 1.2 Differentiate (i) object and action, and (ii) atomic actions
and non-atomic actions
Definition
Being able to tell whether something (picture, sentence) refers to an object, an action, or
else a sequence of actions.

Background
Objects and actions can be seen as metaphors of the concepts of expressions and
instructions used in computer science. Typically, expressions have a value while instructions
do not (they change the state of the environment [memory, screen, etc.]).

2

This competency refers to the ability to tell parts of an algorithm (e.g. recipe, movement,
etc.) which have values (typically represented by nouns) from those which do not (typically
represented by verbs).

Furthermore, some actions can be decomposed into sub-actions, in which case these are
called non-atomic actions. Actions which cannot be further decomposed are called atomic
actions.

Examples

1. Given words/groups of words, being able to say if it is an object (typically a noun
such as a mountain, a tree, an image, the number 5) or an action (typically a verbal
phrase such as jump, put on something, sing, think).

2. Given cards with words, being able to classify them into two groups (objects vs.
actions), and then try to see which actions can apply to which objects.

3. Imagine (i) what actions one can perform on an object or (ii) on what objects an
action can be performed.

4. Classify these actions into atomic and non atomic: get ready for school, put a sock
on, dance, order animals by size, turn 90 degrees left, multiply a number by two, give
the first letter of the alphabet,...

C 1.3 Identify the input parameters of a sequence of actions
Definition
Being able to tell what is required (objects or sequences of actions) in order to perform a
sequence of actions.

Background
Sequences of actions can be seen as functions (in a mathematical sense). Its input
parameters are often simply called input.
When learning algorithmics, it is good practice to start with clearly and precisely list the input
and the outcome (result) of an algorithm prior to writing the algorithm itself.

Examples

1. If I want to say who is the tallest out of three people, I need to know their size.

2. For getting dressed I need to know the pieces of clothing I have.

3. To prepare a recipe, I need to know the ingredients at hand.

4. To cut someone’s hair, I need scissors and someone with hair.

3

C 1.4 Describe the outcome of a sequence of actions
Definition
After executing a sequence of actions (informal, algorithm, program), being able to tell what
happened. The learner should describe the final situation (which objects have been modified
/ created / suppressed, or what solution to a problem has been found).

Note that the construction of the sequence is not part of this competency, but of competency
C 2.3.

Background
This competency is strongly linked to competency C1.3 above. Both competencies are
needed to define effective sequences of actions.

Examples

1. Given a program (i.e. in Scratch) the learner can say that the cat has moved from top
to bottom three times, or the turtle is in the car or the box contains 3 pens.

2. Given a recipe (without the title), the learner is able to tell what dish has been
prepared.

3. Here is a map (grid 3x3), with start position (1,1), and end position (3,3):

End

Start

Here is an algorithm:
Move Up
Move Up
Move Right
Move Right

Imagine a robot is put on position (1,2), the learner should be able to execute this
algorithm and tell if it allows the robot to reach the end position.

4

C 1.5 Predict the outcome of a sequence of actions
Definition
Being able to tell, from a sequence of actions, what will happen if it is executed. In contrast
to competency 1.4, this competency is about providing a prediction without actually
executing the sequence of actions.

Background
This competency is important to prevent learners from overusing a "trial and error" approach
(that is, changing the program as long as it fails without trying to understand/predict why).

Examples

1. Taking the grid from the last example illustrating competency C 1.4, being able to
predict whether the robot will reach the end position, but with the constraint that the
program/algorithm is not actually run.

2. Give children a starting position on a grid (e.g., 1,1 on the grid above) and a program
(such as Move Up Move Right Move Down Move Left) and ask them what figure will
the turtle draw if I run this program from this initial position.

3. Give the learners a criterion to compare persons (for instance, their size), and ask
them what would be the outcome of comparing persons pairwise such that, at each
step, the person with the greater value is reused in the next comparison.

C 1.6 Using objects whose value can change
Definition
Being able to handle values which may vary depending on the context, and refer to them
using named abstractions (also known as identifiers).

Background
This competency introduces the concept of computer variable, which corresponds to the
association of a name with a memory slot. Introducing the name is called “variable
declaration” and associating this name with a value is called “variable affectation”.

Examples

1. Give children cards with numbers. The teacher will spell out an addition piece by
piece. The children will have to compute the result of the addition on the fly (without
knowing its members in advance) and choose / update the result card.

2. Create a program in Scratch where every five clicks the cat meows, or where the
score of the player is the number of times the cat has been clicked.

5

C 1.7 Recognize existing objects and (sequences of) actions
that can be used to reach a similar goal
Definition
Given a new problem (that is, a problem whose solution is not yet known), being able to
realise that it is similar to an already known problem, and that an already known solution to
this problem can be partly or fully reused to solve the new problem.

Background
Computational thinking also includes being able to build on already existing work rather than
inventing everything from scratch.

Note that modifying a solution to adapt it to a new problem is discussed in competency C
2.5.

Examples

1. You have a list of recipes: tomato soup, strawberry cake, vegetable curry. If you need
to make an onion soup, which of these recipes will you use?

2. The learners are given the algorithm to compute the biggest value out of three
values. Then, the teacher asks which part can be reused to compute the smallest
value out of three values.

6

Competency 2: Compose/decompose a sequence
of actions

C 2.1 Order a sequence of actions to reach a goal
Definition
Given an unordered list of actions and a goal, being able to combine these actions in a valid
order to build a sequence that achieves the goal.

Background
Before being able to create an entire sequence of actions (see C 2.3), an easier activity
towards this competency would be to order already existing parts of a sequence of actions.
So, the learner does not need to identify all the parts needed to achieve the goal, but only
their correct order.

Examples

1. Let the learners imagine they have to bake a cake, and give them unordered parts of
the recipe, they should be able to correctly order these parts (e.g. 1. Take a bowl, 2.
measure the quantity of flour, etc).

2. Give the kids the different steps to get dressed and ask them to order them correctly
(several ones are acceptable).

C 2.2 Complete a sequence of actions to reach a simple goal
Definition
Given a limited sequence of actions and a simple goal (not relying on concepts such as
conditions and loops), being able to complete the sequence of actions (by adding missing
actions) to reach the goal.

Background
In algorithmics, learning often starts with getting inspiration from existing solutions (resp.
problems). In this context, it is important to be able to evaluate how far is a solution from an
existing solution, and to complete it if needed.

Examples

1. A drawing is almost finished and the learner has to add the missing action(s).

2. Considering the goal to bring a sprite to some place on the screen. An existing
program does part of the way, the learner has to complete the missing actions
(possibly copying and pasting already existing ones) towards bringing the sprite to
the target location.

7

C 2.3 Create a sequence of actions to reach a simple goal
Definition
Given a simple goal (not relying on concepts such as conditions and loops), being able to
identify all the necessary actions and put them in the right order.

Background
This ability can be seen as an extension of the ability to order (see C 2.1) or complete (see
C 2.2) an existing sequence of actions.

Examples

1. The learner is put in the middle of an empty room and given a set of possible actions.
Ask them to tell the list of actions necessary to open a door: e.g. turn towards the
door, walk to the door, grab the handle, push it downwards, pull the door.

2. Draw a square: Go forward, turn right, go forward, turn right, …

C 2.4 Create a sequence of actions to reach a complex goal
Definition
Being able to identify and combine actions to reach a complex goal (goal requiring simple or
complex conditions, loops, etc.).

Background
This competency is an extension of competency C 2.3 above.

Examples
1. Find your way through a maze without touching the walls.

2. Describe the necessary actions to add two integers.

3. Given a map with initial and final positions (possibly several checkpoints to visit), and
additional rules (obstacles,...), describe the actions to reach the objective while
satisfying the rules.

8

C 2.5 Combine sequences of actions to reach a goal
Definition
Given already known sequences of actions achieving known goals, being able (i) to tell, in a
given context (new goal to achieve), relevant from irrelevant sequences, and (ii) to connect
them together in a valid order (that is, which allows to reach the new goal).

Background
Here the focus is on the combination of sequences. There is another layer of abstraction. It
is not only about combining actions or objects but sequences (generally referred to by a
name). This competency extends C 1.7 that only required to identify the reusable parts.

Examples
1. Take the sequences of actions for preparing individual dishes, and combine them (in

the right order) to provide a full menu from the aperitif to desert.

2. Given two sequences of actions respectively drawing a square and a triangle,
combine them to draw a simple house.

3. Make a complex game (with several levels) composed of smaller games that already
exist.

4. Given the function max(a,b) that computes the maximum of a and b, identify that
max(max(a,b),c) computes the maximum of a, b and c.

C 2.6 Decompose goals into simpler subgoals
Definition
Given a complex goal, being able to split it into several subgoals, which can be achieved
more easily. The subgoals can then be tackled by different people.

Background
When designing large software, learners often face a “blank sheet” wondering “where do I
start?”. It is important to be able to tackle complex issues by first splitting them into smaller
(and easier to solve) issues.
Here it is no longer about adapting a solution to a problem, but rather about adapting a
complex problem to solutions by decomposing it.

Examples
1. What are the main steps to get the school bag ready for tomorrow? (e.g., find school

bag, check the topics on tomorrow’s schedule, get material for each course into the
bag)

2. Order a list of dishes for a group of people (e.g., get each one’s order, group them,
send the compiled list to the kitchen)

3. Given a complex geometric form, calculate its surface by decomposing it into several
simpler forms.

9

Competency 3: Control a sequence of actions

C 3.1 Repeat a sequence of actions a given number of times
Definition
Being able to appropriately use repetitions of (sequences of) actions a given number of
times in order to reach a goal.

Background
A first famous family of repetitions in CS are the ones that are executed a given (known in
advance) number of times (for loop in programming languages).

Examples
1. Ask the learners to write an algorithm that adds 3 egg yolks into the bowl. If the

children don’t see the advantage of a loop, then ask them to add 25 egg yolks.

2. Given a robot that can only turn 45° left, create a sequence of actions that allows him
to follow a given path (every time the robot has to turn, the program will need to
repeat the Turn Left action as many times as needed to turn the desired angle).

C 3.2 Repeat a sequence of actions until a goal has been
reached
Definition
Being able to control repetitions of (sequences of) actions until a condition is met, in order to
reach a goal.

Background
Repetitions that are executed until a condition is met (the number of repetitions is not known
in advance) are also a famous family in CS (while loop in programming languages).

Examples
1. Mix the ingredients until you get a smooth dough.

2. Move forward until you reach the wall (in this case we assume that there is a sensor
to detect close obstacles).

10

C 3.3 Integrate a simple condition into a sequence of actions
Definition
Being able to use simple conditions (a simple condition can be expressed using a single
criterion) to allow (or disallow) some (sequences of) actions.

Background
Controlling the execution of some (sequence of) actions by means of conditions is central in
computational thinking, see also competency C 4.1 below.

Examples
1. If the dough is thick then add 20 cl of water and mix.

2. If the robot faces the wall then it moves backwards, else it stops.

3. Ask one person his/her age, and tell him (depending on the answer) “you’re an
adult now” or “wait a bit before driving a car”.

C 3.4 Integrate a complex condition into a a sequence of
actions
Definition
Being able to combine conditions by means of logical operators (and, or, not) to allow (or
disallow) some (sequences of) actions.

Background
When designing algorithms, it is very useful to combine several conditions to describe the
solution to a problem.

While developing computational thinking, it is important to realize that every condition is an
object as any other (in CS they are called booleans). Boolean objects can be constant (as
the expression “2>1” that is always true) or variable (“the temperature is above 10°C today”
is not always true).

Examples
1. If x is strictly less than 0 and strictly greater than 24, then it is not a valid hour.

2. If the dough is thick and its temperature is below 10°C and we are on a Saturday or
a Sunday then go to the 24/7 shop and buy milk.

3. If the robot faces the wall and there is a wall on its left too or the temperature is
above 10°C then it stop else it turns 45° twice.

11

Competency 4: Evaluate objects or sequences of
actions

C 4.1 Compare two objects according to a given criterion
Definition
Given two objects, and a comparison criterion, being able to compare these objects with
respect to the criterion.

Background
In CS, it is common to reason about objects with an order relationship, like numbers (order
on reals or integers) or words (lexicographic order). Being able to apply this notion of order
on various objects (age or size of people) is part of computational thinking.

Examples
1. The teacher chooses the criterion (size, weight, width,...) and the children have to

order the objects depending on the order.

2. Make cards with objects on them (people, animals, things you find in a kitchen) and
ask the kids to group them into several categories with respect to a criterion they
chose (size, number of legs, things they eat, color of skin, material), and then ask
them to change the criterion and the grouping. Notice that here, there is not always
an order (e.g. the colors).

3. Compare weights using a beam balance. This one is a good tool since it allows one
to compare two weights (like a processor that applies binary operations). It prevents
the learners from claiming that they can compare all the values at once, as novices
tend to do.

C 4.2 Compare two sequences of actions according to a given
criterion
Definition
Being able to compare two sequences of actions with respect to several criteria: readability,
number of lines, execution time, or other criteria.

Background
When a solution (sequence of actions) is found, it is tempting not to question its quality.
Computational thinking is also about knowing that a problem may have 0, one or more
solutions, and about being critical about solutions (which requires to be able to compare
them).

12

Examples
1. There are several routes to travel from Nancy to Liège. Find the fastest, the most

ecological, the cheapest,…

2. You have two robots, one that is fast moving but slow turning and the other one is
fast turning but slow moving. Sometimes a longer way is more efficient than a shorter
one, depending on the robot. Give several mazes to the students with different
features (e.g., amount of turning moves required), and let them decide which robot is
best suited for which maze.

3. I know how to cycle, drive and walk. Now, I am given a journey to make, which
means of transport fits best (based on parking, distance, traffic...)?

C 4.3 Improve a sequence of actions according to a given
criterion
Definition
Being able to think about the possibility to improve a sequence of actions with respect to a
criterion and modify it accordingly.

Background
As a follow-up of competency C 4.2, it is important, once a solution (sequence of actions) is
known to be sub-optimal with respect to a given criterion, to be able to search for ways to
improve it.

Examples
1. Give the learners an algorithm for the robot to go from point A to point B, and ask for

a path with less turns/jumps/steps.

2. Provide a recipe with repetitive actions (add one egg, adding one egg, add one egg),
and ask the learners to make the code more readable by, e.g., adding a loop for
adding the eggs.

13

Competency 5: Handling formal representations

C 5.1 Represent objects or sequences of actions through one
formal representation
Definition
Being able to represent an object or an action by using a precisely defined (i.e.
non-ambiguous) representation mode.

Background
Computational thinking entails being able to use a precisely defined language (called formal
language) which can be efficiently and unambiguously processed by another human or a
machine. This competency 5.1 therefore refers to the ability to represent a word, a picture or
a number (or a combination of these) using a precisely defined code/language (e.g. a new
alphabet, symbols, etc.. This representation choice is generally called encoding in Computer
Science.

Examples
1. Use different pictograms with a precise meaning (related to an action) to describe a

sequence of actions (e.g., movements of a robot on a grid) stated orally and
informally.

2. Associate a number (using e.g. ASCII table) to a character of the keyboard.

3. Send a secret message to someone by ciphering and deciphering it using a code
(using a correspondence table).

C 5.2 Translate objects or sequences of actions between formal
representations
Definition
Being able to use another formal language/code to represent a formally described object or
sequence of actions.

Background
This competency is an extension of competency C 5.1 above, with the extra constraint that
the representation systems for both pieces of information are based on precisely defined
rules (formal representations).

Examples
1. Translate the arabic number 2 into another formal representation (e.g. roman

numerals, sign language, etc.).

14

2. Have two different languages for a robot: on the one hand “go north, south, east,
west” and, on the other hand, ”forward, turn left, turn right” and ask the children to
translate a program from one of these two languages to the other.

15

Competency 6: Build a sequence of actions
iteratively

C 6.1 Verify if a sequence of actions reaches a given goal
Definition
Being able to verify whether a given sequence of actions produces the expected outcome or
not.

Background
Some sequences of actions answer a particular problem while others answer a general
problem (dependent on parameters). Based on the latter case, the competency that is
sought after here is the ability of being able to verify the parameters that make a sequence
of actions work (based on the expected result) or not.
This competency therefore aims among other things at developing in the learner the habit of
verifying and iteratively amending a sequence of actions, based on tests (parameters and
associated result).

Examples
1. Take the word “Toto”, understand the sequence of actions that allows to calculate the

number of letters the word has and verify that this sequence returns a “4”.

2. Take any word, a sequence of actions that calculates the number of letters in the
word, and verify that the result returned is the expected one.

3. Here is a map (grid 3x3), here is the entrance (position (1,1)) and here is the exit
(position (3,3)):

Out

In

Here is an algorithm:
Move Up
Move Up
Move Right
Move Right

Check that when the robot starts at the entrance, and the algorithm is run, it leads it
to the exit.

16

C 6.2 Notice errors in a sequence of actions
Definition
In case of having a faulty sequence of actions, being capable of identifying the error(s)

Background
Tests are not only useful to check whether a sequence of actions is valid. When these are
well chosen, they also make it easier to find out why a given sequence is not valid, and to
hypothesize about the causes of the error.

Examples
1. Transform 120 grams into kilograms.

The suggested sequence: Take the number of grams, move left two digits and put a
dot → the outcome is 1.2kg. The student needs to identify the problem in this code
and fix it.

2. Here is a map (grid 3x3), here is the entrance (position (1,1)) and here is the exit
(position (3,3)):

Out

In

Here is an algorithm:
Move Up
Move Left
Move Right
Move Right

Be able to identify where the error is.

C 6.3 Fix a sequence of actions for reaching a given goal

Definition
From a given sequence of actions which fails to reach a given goal, being able to modify it
so that it does.

Background
Once that the tests have allowed to identify the error(s), it is important to correct it/them
possibly by repeating the process. Important to note that it is important to keep in mind that

17

providing the expected result on an example does not guarantee that the sequence of
actions is correct/generalizable, nor that it is the best solution(s) (e.g. in terms of
intermediate steps).

Example

1. Let us assume there is a map (grid 3x3) with (1,1) being the entrance and (3,3) being
the exit:

Out

In😊

The following algorithm doesn’t make it possible to go from the entrance to the exit . Fix it.

Move right
Move left
Move up
Move right

The correction is Move up at the second line.

18

C 6.4 Extend or modify a sequence of actions to reach a new
goal
Definition
From a given sequence of actions whose outcome is known (the sequence is complete with
respect to a previous goal), being able to reuse and update it to reach another (new) goal.

Background
In CS, to design complex programs, it is good practice to start with a simpler goal. We first
write the corresponding program, simple but functional, and then we extend it step by step
with new functionalities while ensuring that the modifications will not break what has been
done so far. This method is called an iterative approach.

Note that this competency differs from C 2.2 where we started from an incomplete sequence
of actions (that was thus not fulfilling its goal). Here we progressively extend a functioning
sequence of actions, getting closer and closer to a final objective.

Examples
1. Having programmed a drawing (e.g. a square in Scratch), use it in another program

to program a more advanced drawing (e.g., a flower (consisting of several squares
slightly rotated from one another)).

2. The learners start from a program (given or that they have developed themselves)
that implements a maze game where the player moves a character from the entrance
to the exit without touching the walls. They then extend this program to add a ghost
that moves on the screen, going through the walls, and that the character has to
avoid or else the game is lost.

19

